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Robust Lane Detection Using Multiple Features
Tejus Gupta∗, Harshit S. Sikchi∗ and Debashish Charkravarty

Abstract— Lane marker detection is a crucial challenge in
developing self-driving cars. Despite significant research, large
gaps remain between research and needs for fully autonomous
driving. We highlight the limitations of present work and
present a unified approach for robust and real-time lane marker
detection. We present a multi-feature lane detection algorithm
and give evidence why relying on one type of features can be
harmful. We design a lane model using geometric constraints
on lane shape and fit the lane model to the visual cues extracted.
We improve the robustness of our algorithm by tracking lane
markers temporally. We test our algorithm on KITTI dataset
and show results that our algorithm can detect lane markers
in presence of occlusions, sharp curves, and shadows.

I. INTRODUCTION

Autonomous vehicles can significantly reduce the increas-
ing number of traffic accidents caused by drivers fault [1].
In order to drive autonomously, the vehicle needs to segment
drivable regions and lane boundaries as well as process
this information for planning and control of the vehicle.
This paper studies ego-lane detection where the task is to
identify the lane the vehicle is currently driving on. There
are several challenges associated with ego-lane detection the
most critical of which are as follows [2]

1. Diversity in road and lane marker appearance (e.g,
curved and dashed lanes)

2. Occlusions due to near-by vehicles
3. Intensity variations on road (shadows from nearby trees,

buildings and, other vehicles that create misleading edges and
texture on the road, glare, etc).

Several approaches have been followed for lane
detection[3], [2]. However, none of the methods have suc-
cessfully overcome all the challenges described above. Most
lane detection methods extract specialized features and use
these features to fit a lane model.

[4], [3] and [5] extract features based on vanishing point
constraint. Due to perspective projection, road boundaries
in the image plane must meet on a shared vanishing point
on the horizon. Wang et al [4] use CHEVP (Canny-Hough
Estimation of Vanishing Points) algorithm for initializing
their B-Snake lane model. CHEVP detects edges using
Canny edge detection and uses hough lines to fit lines. They
compute the intersection of every pair of lines to vote for
vanishing point estimate. Then, they assume that the lines
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Fig. 1: Results on the Kitti-Dataset. Blue curves are lane
boundaries and the red curve is the lane center line.

voting for the detected vanishing point are road boundaries
and use these lines to initialize their lane model parameters.
Yoo [3] focused on improving vanishing point detection by
using probabilistic voting in his work. Kang [5] used the
position of vanishing point to generate hypothesis for the
position of adjacent lanes. Vanishing point based methods
have a disadvantage that line detection suffers from high false
detection rate under variable scene illumination. Parajuli [6]
describes this problem and uses local gradient spectrum
to detect lane in shadows and low-illumination conditions.
Other works have used color-based features, ridge features,
etc.

There have been various approaches for modeling lane
boundaries. Wang [4] uses uniform cubic Bezier-splines for



modeling lane markers. They initialize their model using
CHEVP algorithm and track the control points for Bezier-
spline temporally using an energy minimization framework.

Aly [7] also uses splines to model the lane marker and uses
RANSAC for spline fitting. McCall et al. [8] used a simple
parabolic model which incorporates lane position, angle, and
curvature. Most algorithms [4], [6], [3] assume that lane
markers are straight and so their lane model is incapable of
detecting curved lanes. There is a trade-off between over-
constrained models which do not cover all existing road
geometries and under-constrained ones which tend to over-fit
noisy features. Lane detection results have been improved by
integrating knowledge from previous frames using Kalman
filter [9], [10], extended Kalman filter [11], [12], particle
filter [13], [14], and super-particle filter [15].

In general, these approaches are prone to robustness issues
and recent methods have used deep neural networks to detect
lane markers. Convolutional neural networks designed for
semantic segmentation [16] can be trained to obtain pixel-
wise lane segmentation. [17] posed lane detection as an
instance segmentation problem with each lane as an instance
and proposed a network architecture that can be trained end-
to-end for this task. In [18], a spatial CNN architecture was
suggested that passes information slice-by-slice within each
feature map and is able to exploit the strong shape prior of
lane markings. [19] improved performance by jointly training
for estimating vanishing point and detecting objects with
shared weights.

We treat semantic segmentation from deep neural networks
as specialized feature and use the lane model and temporal
tracking to improve robustness.

In this paper, we present a robust approach to ego-lane
detection using monocular RGB images. The contributions
of this paper can be summarized as follows:

1) An ego-lane detection algorithm is proposed that per-
forms robustly in case of curved roads, occlusion, and
shadows. The design is aimed to use several low-level
visual features so that the detector doesn’t fail when one
of the visual features gives incorrect results. Potentially a
significant number of features extracted may be incorrect or
noisy and so a robust estimator is used for updating the lane
model at every step.

2) The proposed method’s performance is evaluated on the
KITTI dataset. A novel evaluation metric is proposed which
is more suitable for judging lane detection results.

II. PROPOSED METHODOLOGY

The first step in our lane detection pipeline is lane features
extraction. In this context, a feature is a region of the image
that is a suspected lane marker position. Since this step has a
high false positive rate, we fit a geometric model to the visual
features extracted. Our fitting procedure rejects outliers and
gives a compact high-level representation of the lane mark-
ers. Finally, we fuse our detection result with knowledge
from previous frames to improve detection accuracy.

A. Lane Features Extraction
We use multiple algorithms for extracting lane features.

Each of these algorithms exploits different properties of
lane markers. This ensures that our lane detection algorithm
doesn’t fail when one of the feature extractors gives incorrect
results. For example, edge-based feature detectors don’t
work well in shadows and so lane detection algorithms that
solely rely on edge-based features fail in low-illumination
conditions.

1) Gradient-based features: We exploit the property that
lane markers form intensity edges. Line segments are ex-
tracted using line segment detector (LSD) method in [20].
We use LSD method because it reduces false detections
which often arise in Hough transform. LSD performs well
without parameter tuning. After this step, the detected line
segments contain several non-lane features and so geometric
constraints are used to remove these.

All parallel lines in a plane meet at a fixed line in image
plane when viewed from a camera using pin-hole perspective
model. Assuming a flat road, this property implies that lines
corresponding to lane markers intersect on a fixed line in the
image plane i.e. horizon. We now describe an algorithm that
uses this property to remove non-lane lines detected.

For each line segment Li, the intersection point with every
other line segment is considered and used to compute a score
for Li.

score(Li) =
∑

j⊂S(Li)

length(Lj)

S(Li) = { j | Li and Lj intersect at horizon}

All lines with a score below the threshold are removed.
After this step, only lines corresponding to lane markers and
noisy lines that are parallel to road boundary are retained.

Fig. 2: Image with heavy shadows and edges detected by
LSD.

2) Intensity-based features: Shadows create misleading
edges and texture on the road and hence edge features fail
to work robustly in presence of shadows. Fig. 2 shows how
shadows mask lane-road edges and cause false intensity
edges. In different illumination conditions (e.g, in presence



Fig. 3: From left to right: Input image, edges detected using LSD, filtered lines obtained using the horizon constraint.

of shadows), lane markers may have different brightness yet
maintain their superiority relationship with their horizontal
neighbors. So, lane markers can be detected by searching for
low-high-low pattern horizontally in the image.

Fig. 4: Top-view image and intensity profile with/without
shadow.

Due to perspective distortion, searching for this pattern is
difficult as lane width varies with image row. We circumvent
this problem by generating the top-view of the road image.
In this inverse perspective image, the lane marker width is
constant. To get the inverse perspective transform of the input
image, we assume a flat road and compute the homography
matrix using the camera intrinsic (focal length and optical
center) and extrinsic (pitch, yaw, and height above ground).

The top-view image is smoothed vertically and convoluted
with the second derivative of Gaussian. We tune standard
deviation (σ) of the Gaussian to respond to bright vertical
lines of specific width on a dark background. Since the
orientation of lane marker isn’t necessarily vertical, we apply
this filter at five orientations (−15◦, −7.5◦, 0◦, 7.5◦, 15◦)
and take pixel-wise maximum of the filter response.

The output of this step provides an accurate estimation of
lane markers but we still need to threshold the filter output to
remove noisy response. Our thresholding method is similar
to the hysteresis thresholding technique used in Canny edge

Fig. 5: (Left) Top-view image after convolution, (Right)
Image after thresholding.

detector. We select low and high threshold values, retaining
the pixels whose value lies above the high threshold and
those below the low threshold are rejected. For pixel values
lying between this range, a graph search is performed and the
diameter of this graph is computed. Pixels for this graph are
accepted if the diameter exceeds a minimum threshold. This
minimum threshold corresponds to minimum lane marker
length encountered in the bird’s eye image. This threshold is
set considering the dashed lanes faced in various scenarios.

3) Texture-based features: Roads are not always bounded
by man-made markings e.g, dirt roads have no marking at
all and only color or texture difference between the road and
off-road areas can indicate the boundaries. We identify road
region and use the boundaries as our third feature. Semantic
segmentation is well-researched problem and recent years
have experienced rapid progress, largely due to new deep
learning based methods.

In our pipeline, we use the Multinet model [21] for road
segmentation. The MultiNet architecture uses an encoder-
decoder architecture with shared encoder for classification,
detection, and semantic segmentation. It achieves state-of-



Fig. 6: Segmentation results using MultiNet on images from KITTI sequence.

the-art results with 92.2% mean precision in road segmenta-
tion on KITTI dataset and takes 43 ms for inference.

B. Use previous frame’s lane estimate to filter extracted
features

We reduce computation and prevent erroneous detection
by limiting the image regions from which features are
extracted. In our implementation, we only keep features that
are less than 2.5 meters away from previous lane estimate.
This step also helps us identify which features correspond to
left and right lane markers.

We choose the threshold of 2.5 meters using our vehicle’s
speed constraints. Our car has a maximum speed of 60 km/hr
and our algorithm runs at 10-15 frames per second, so the
car moves at most 1.5 meters between consecutive frames.

C. Lane Model Estimation
Lane model plays an important role in lane detection.

The model represents our assumption about the shape and
geometry of lane markers in the real world. The lane model
also helps us to extract a compact representation of the
scene. This representation can be used for more complex
road understanding e.g, identifying lane merges and splits
and higher level decision making.

For our ego lane model, we assume the lane markers are
parallel on the ground plane. We approximate the lane center
line with a cubic polynomial.

P = ax3 + bx2 + cx+ d
PL = ax3 + bx2 + cx+ d− w/2
PR = ax3 + bx2 + cx+ d+ w/2

An advantage of our lane model is that it enables us to
detect both lanes even if one lane is heavily occluded. We
can fit our lane model with points from only one lane if
the lane width is known. In our implementation, we do not
update the lane width if number of points obtained on either
of the lanes is below a threshold.

1) Initialization: The initialization method consists of
two steps: a simple global estimation of lane position and
refining our estimate using RANSAC. A histogram is created
using the column-wise sum of feature points and smoothing
it using Gaussian filter. The histogram is convolved with a
filter described below.

T (w) =


1 x ≤ w/2 + k and x ≥ w/2− k
1 x ≤ −w/2 + k and x ≥ −w/2− k
0 otherwise

Fig. 7: Features extracted and histogram showing column-
wise sum of extracted pixels. The red circles are the lane
position estimate.

The filter is similar to the one used for extracting intensity
features but responds to low-high-low patterns separated by
distance w, which is the separation between lanes. This filter
prefers the lane boundaries separated by width w with some
error specified by ‘k’ in the above formula. We use w =
3.7 meter which is the lane width standard in Europe. The
maxima of response with the above filter are used as lane
center and lane positions are estimated at the positions of
the local maxima.

We use a window of size 2 meter around the lane position
estimate and features in this window are used to find the
exact lane position and orientation. We use RANSAC spline
fitting to estimate the parameters of the lane model. This
estimate is used to initialize our tracking step.

2) Outlier Elimination and Model Update:
Potentially there are a significant number of non-lane points
among the visual features extracted. Because of the pres-
ence of these outliers, the standard method of least squares
estimation is not suitable. The aim is then to obtain a set
of inliers consistent with the lane geometry using a robust
estimator.

The RANSAC algorithm selects the hypothesis with the
highest number of inliers. It finds the minimum of the
following cost function

C =
∑
i

ρ(e2i )



where

ρ(e2i ) =

{
0 e2 < T 2

constant e2 ≥ T 2

and ei is the cost function for the ith data point, and T is
the threshold for considering a data point as inlier.

In MSAC [22], Torr and Zisserman proposed to truncate
the error instead of thresholding to gain additional sensitivity
at no additional cost.

C
′
=

∑
i

ρ
′
(e2i )

where

ρ
′
(e2i ) =

{
e2 e2 < T 2

T 2 e2 ≥ T 2

We use MSAC to identify the set of inliers. In every frame,
the parameters of the lane model are updated with the least
squares fit to the inliers.

Algorithm 1 Lane Detection using Multiple Features
begin

Extract visual features.
Initialize lane model.
for every new frame do

Extract visual features in search region defined
using previous lane estimate.
Identify inliers using MSAC.
Update model with least squares fit for set of inliers.

end
end

III. EXPERIMENTAL RESULTS

A. Dataset

We chose the KITTI autonomous driving dataset [23] as
the testbed for our evaluation since it provides a large variety
of challenging, real-world images of different scenarios. The
KITTI lane detection benchmark has images annotated with
the ego-lane marking but is not suitable for evaluating our
algorithm as the provided images aren’t continuous and our
algorithm tracks lane estimates temporally.

The ‘Road’ category1 contains twelve different sequences
obtained in the daytime and capturing a wide range of
interesting scenarios. We have annotated four challenging
sequences from the ‘Road’ category and used it to test our
detector. The sequences are suitable for testing the detector
in presence of heavy traffic, curved roads, shadows, and glare
on roads. In all experiments, we limit ourselves to a thorough
evaluation of the ego lane detection.

We manually annotated ego lane boundary up to 80 meters
from the vehicle for each frame in these sequences. The
annotated dataset contains 1850 images. We use a tool that
fits a cubic spline to lane markers in Birds Eye View for
annotation. We manually verified that the lane boundary
marked were satisfactorily accurate.

B. Evaluation Metric

Previous methods [7], [3] have used image-based evalu-
ation metrics like average localization errors in pixels. We
choose to evaluate our algorithm in the Bird’s Eye View
space as vehicle controls need the lane boundaries in this
frame. Unlike previous image-based methods, the results of
our detector can be compared to lane detection performed
using other sensors like LIDAR.

The detection results shown in Table II are computed auto-
matically using the hand-labeled data. To calculate detection
rate, in each frame, each detected lane boundary is compared
to ground truth lanes, and a check is made to decide if it is
a correct or false detection. For the detected curve to be
correct, the maximal error from ground truth must be less
than t.

∀Pi ∈ S : max(dist(Pi, Cj)) < t

where, S is the set of points in the annotated groundd truth
and Cj is the nearest point to Pi on the detected curve.

The mean error in centimeters is calculated as the average
distance of points in the ground truth annotation with the
corresponding closest point on the detected curve.∑

i

dist(Pi, Cj)/T

where T is the total number of points belonging to lane in
ground truth and Cj is the nearest point on the detected curve
to the corresponding Pi on S.

Sequence Name [Kitti1] Frames Conditions

2011 09 26 drive 0027 384 Heavy Shadows

2011 09 26 drive 0032 396 Glare on Road

2011 10 03 drive 0042 400 Curved Road

2011 10 03 drive 0047 670 Heavy Traffic

C. Results

Table II shows the performance of our lane detection al-
gorithm in diverse conditions encountered in KITTI Dataset.
The detection rate is computed with t = 70 cm. The proposed
algorithm works well in the case of shadows, curved and
dashed lanes, heavy traffic, illumination conditions which
were the challenges we had described before. The algorithm
also runs in real time at 10 frames per second on an Intel
core I7-5500 2.40 GHz processor and Pascal Titan X GPU.
Test Results on KITTI Dataset are shown in the link 2.

IV. CONCLUSION

In the paper, we present a unified lane marker detection
algorithm. Our algorithm is able to detect lanes in a wide
range of scenarios robustly.

1http://www.cvlibs.net/datasets/kitti/raw_data.
php?type=road

2https://youtu.be/TzlBsWBXbVs

http://www.cvlibs.net/datasets/kitti/raw_data.php?type=road
http://www.cvlibs.net/datasets/kitti/raw_data.php?type=road
https://youtu.be/TzlBsWBXbVs


Fig. 8: From left to right - gradient-based features, intensity-based features, texture-based features, lane detection result. In
both examples, some features are noisy/incorrect but the lane detector performs well.

TABLE I: Evaluation for ego-lane detection

Sequence Name [Kitti1] Detection Rate Mean Error (cm)

2011 09 26 drive 0027 83% 54.7

2011 09 26 drive 0032 91% 34.5

2011 10 03 drive 0042 94% 53.1

2011 10 03 drive 0047 87% 44.1

Our future work will study the usefulness of using other
sensors for extracting lane features e.g, stereo camera and
3D lidar, as well as explicit lane marker segmentation using
deep neural networks.
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