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Abstract
Imitation learning is a promising approach for
robotic tasks where it is difficult to directly pro-
gram the behaviour or specify a cost for optimal
control methods. In this work, we propose a
method for learning the reward function (and cor-
responding policy) by specifying the expert state
density. Our main result is the analytic gradient
of any f -divergence between the agent and expert
state distribution w.r.t. reward parameters. We
present a novel algorithm SMM-IRL based on
the derived gradient and show that it has competi-
tive performance with previous imitation learning
methods on robotic simulation tasks. Unlike our
algorithm, previous approaches based on state
density matching do not recover the reward func-
tion. The recovered reward function can be lever-
aged to solve downstream tasks efficiently. We
empirically show one such example, where the
reward function obtained from our algorithm is
used to solve hard-to-explore tasks.

1. Introduction
Imitation learning (IL) is a powerful tool to design au-
tonomous behaviours in robotic systems. Though reinforce-
ment learning methods promise to learn such behaviours
automatically, they have been most successful in tasks with
a clear definition of the reward function. Reward design
remains difficult in many robotic tasks such as driving a
car (Pomerleau, 1989), tying a knot (Osa et al., 2017), and
human-robot cooperation (Hadfield-Menell et al., 2016).
Imitation learning is a popular approach to such tasks, since
it is easier for an expert teacher to demonstrate the desired
behaviour rather than specify the reward (Atkeson & Schaal,
1997; Henderson et al., 2018; Hwangbo et al., 2019).

Methods in IL frameworks are generally split into behavior
cloning (BC) (Bain & Sammut, 1995) and inverse reinforce-
ment learning (IRL) (Russell, 1998; Ng et al., 2000). BC is
typically based on supervised learning to regress expert ac-
tions from expert observations without the need for further
interaction with the environment, but suffers from the co-
variate shift problem (Ross & Bagnell, 2010). On the other
hand, IRL methods aim to learn the reward from expert

demonstrations, and use it to train the agent policy.

Traditionally, IL methods assume access to expert demon-
strations and minimize some divergence between policy and
expert’s trajectory (or state) distribution. However, in many
cases, it is easier to directly specify the state distribution
of the desired behaviour rather than provide fully-specified
demonstrations of the desired behaviour. For example, con-
sider a safety task where we want to specify zero density on
unsafe states. In practice, it is difficult to tweak the reward
to penalize safety violations (Dalal et al., 2018). It would
also be impossible to exhaustively enumerate expert trajec-
tories that obey the safety constraint. In our problem setting,
we directly recover the policy (and reward) by simply spec-
ifying the target state marginal. Compared to traditional
imitation learning, our problem formulation is well suited to
optimize the policy (and reward) parameters to stay within
the safety constraints. Similarly, we can specify a uniform
density on the whole state space for exploration tasks, or a
Gaussian centered at the goal for goal-reaching tasks.

Under this novel and practical setup, we frame IRL as a
state-marginal matching (SMM) problem and provide a
novel algorithm (SMM-IRL). We work under the MaxEnt
RL framework (Haarnoja et al., 2017; 2018) where trajec-
tory distribution is parameterized as an energy-based model,
and the agent state density is obtained by marginalizing the
trajectory distribution. We derive an analytic expression
for the gradient of the state-marginal matching objective
with respect to the reward parameters. Our resulting algo-
rithm uses stochastic gradient descent to obtain a reward
and policy that match the expert state density.

Previous works (GAIL (Ho & Ermon, 2016), f-
MAX (Ghasemipour et al., 2019), SMM (Lee et al., 2019))
have cast the state-marginal matching as an adversarial game
between the policy and the discriminator. These methods
recover a policy that matches the expert state density, but
unlike our method, they do not recover a corresponding
reward function. Moreover, since our algorithm directly
performs gradient descent on f -divergence objective, the
convergence guarantees of our algorithm are stronger.

Our experiments show that (1) SMM-IRL can effectively
match expert density on several tasks and (2) the reward
recovered from uniform expert density can be leveraged as
prior to help hard-to-explore tasks.
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2. Related Work
Classical IRL methods (Russell, 1998; Ng et al., 2000)
obtain a policy by learning a reward function from sam-
pled trajectories of an expert policy. MaxEntIRL (Ziebart
et al., 2008) learns a stationary reward by maximizing like-
lihood on expert trajectories, i.e., it minimizes forward
KL divergence in trajectory space under the maximum en-
tropy RL framework. Similar to MaxEntIRL, Deep MaxEn-
tIRL (Wulfmeier et al., 2015) and GCL (Finn et al., 2016b)
optimize the forward KL divergence in trajectory space.

(Finn et al., 2016a) shows that GCL is equivalent to training
GAN with a special structure in discriminator. Following
this direction, a number of methods (Finn et al., 2016a; Fu
et al., 2017; Qureshi et al., 2018) use adversarial training
with a special discriminator to learn from demonstrations
and extract a reward function. To show that these meth-
ods are equivalent to optimizing forward KL divergence
in trajectory space, the authors use incorrect importance
sampling weights which make their gradient biased. We
provide more information to support this claim in Appendix
.6. We also highlight that AIRL does not minimize reverse
KL in state-marginal space as was claimed in (Ghasemipour
et al., 2019), due to subtle differences in the objective from
the original work (Fu et al., 2017).

A set of methods GAIL (Ho & Ermon, 2016), FAIRL
(f-MAX-FKL) (Ghasemipour et al., 2019), f-MAX-RKL
(Ghasemipour et al., 2019) use a vanilla discriminator to
address the issue of running RL in the inner loop. Instead,
these methods directly optimize the policy in the outer loop
using adversarial training. GAIL, FAIRL, f-MAX-RKL can
be showed to optimize the Jensen-Shannon, forward KL
and reverse KL divergence respectively, but fail to learn a
stationary reward function.

SMM (Lee et al., 2019), perhaps closest to this work, op-
timizes for reverse KL between expert and policy state
marginal but also fails to recover a reward function due
to its fictitious play (Brown, 1951).

Contrary to all the methods above, our methods manages to
optimize any f -divergence between state-marginal of expert
and the agent while also recovering a stationary reward
function. Table 1 highlights the contrast more succinctly.

IRL Method Space Div Reward
MaxEntIRL (Ziebart et al., 2008) τ FKL X

GCL (Finn et al., 2016b) τ FKL X
GAN-GCL (Finn et al., 2016a) τ FKL* X

AIRL (Fu et al., 2017) τ FKL* X
GAIL (Ho & Ermon, 2016) s, a JS ×

f-MAX (Ghasemipour et al., 2019) s, a f -div ×
SMM (Lee et al., 2019) s RKL ×

Our Method (SMM-IRL) s f -div X

Table 1. Summary of IRL methods. For each algorithm, we list
(1) the space that their objective operates on: the trajectory τ or
state-action marginal s, a or state marginal s, (2) the divergence
(div) they optimize: f -divergence (f -div), forward KL divergence
(FKL), reverse KL divergence (RKL), and Jensen-Shannon di-
vergence (JS), (3) and whether they can learn stationary rewards
(Reward). Here * means that GAN-GCL and AIRL use incorrect
IS weights to approximate FKL, for more details please refer to
Appendix .6.

3. Learning Stationary Rewards via
State-Marginal Matching

We now present our method, SMM-IRL (State-Marginal
Matching via Inverse Reinforcement Learning). We first
layout the general recipe of SMM-IRL, and then present the
details of the algorithm.

3.1. Notation

Consider a Markov Decision Process (MDP) represented as
a tuple (S,A,P, r, ρ0, T ) with state-space S, action-space
A, dynamics P : S × A × S → [0, 1], reward function
r(s, a), initial state distribution ρ0, and horizon T .

Under the maximum entropy framework (Ziebart,
2010), the soft-optimal policy π maximizes∑T
t=1Eρπ,t(st,at)[r(st, at) + αH(·|st)]. Here ρπ,t is

the state-action marginal distribution of policy π at
timestamp t, and α > 0 is the entropy temperature.

We assume access to an expert state marginal ρE(s) which
is feasible to specify in many tasks. If expert observations
are available, we can fit a density model to the samples.

Let rθ(s) be a parameterized reward function only depen-
dent on state. The optimal MaxEnt trajectory distribution
ρθ(τ) under reward rθ can be computed as:

ρθ(τ) =
1

Z
p(τ)erθ(τ)/α

where p(τ) = p(s1)

T∏
i=1

p(st+1|st, at), rθ(τ) =

T∑
i=1

rθ(st),

Z =

∫
p(τ)erθ(τ)/αdτ

(1)

Slightly overloading the notation, the optimal MaxEnt state
marginal distribution ρθ(s) under reward rθ is obtained by
marginalization:

ρθ(s) ∝
∫
p(τ)erθ(τ)/αητ (s)dτ, ητ (s) =

T∑
t=1

1(τt = s)

(2)
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where ητ (s) can be interpreted as the visitation count of a
state s in a particular trajectory τ .

SMM-IRL can then be formulated as minimizing the fol-
lowing objective in f -divergence Df :

Lf (θ) = Df (ρE(s) || ρθ(s)) (3)

The common choices for f -divergence include forward KL
divergence, reverse KL divergence, and Jensen-Shannon di-
vergence. In the next section, we derive surrogate objective
that can be used to optimize Eq. 3.

3.2. Objectives for State-Marginal Matching in
f -Divergence

We now present the main result of our method in a form
of surrogate objective that has same gradient w.r.t. reward
parameter θ as the original objective Eq. 3.

Theorem 3.1 (f -divergence surrogate objective). Given
any f -divergence, the surrogate objective that minimizes
the f -divergence between state-marginals of expert (E) and
soft-optimal agent under reward (θ̂) in the maximum entropy
framework is given by:

L̃f (θ) =
1

αT
covτ∼ρθ̂(τ)

(
T∑
t=1

hf

(
ρE(st)

ρθ̂(st)

)
,

T∑
t=1

rθ(st)

)
(4)

where hf (t) , f(t) − f ′(t)t, ρE(s) is the expert state
marginal and ρθ̂(s) is the state marginal of the soft-optimal
agent under reward function rθ, and the covariance is taken
under the agent’s trajectory distribution ρθ̂(τ).

Proof. Refer to Appendices A and B.

We distinguish θ̂ from θ to specify that we do not differenti-
ate through θ̂. By the classic theory of gradient descent, if
the f -divergence objective is Lipschitz continuous, then our
method has sublinear convergence to a stationary point.

Choosing f -divergence to be FKL, RKL or JS allows to
derive useful practical algorithms, so we form the following
corollaries. The notations used in the corollaries are the
same as in Theorem 3.1. JS objective is showed in Appendix
.5.

Corollary 3.1.1 (Forward KL surrogate objective).
Choosing f-divergence to be Forward KL. divergence, the
state marginal matching objective reduces to optimizing the
following surrogate objective:

L̃FKL(θ) = − 1

αT
covτ∼ρθ̂(τ)

(
T∑
t=1

ρE(st)

ρθ̂(st)
,

T∑
t=1

rθ(st)

)

Proof. Refer to Appendix .3.

Corollary 3.1.2 (Reverse KL surrogate objective).
Choosing f-divergence to be Reverse KL divergence, the
state marginal matching objective reduces to optimizing the
following surrogate objective:

L̃RKL(θ) = − 1

αT
covτ∼ρθ̂(τ)

(
T∑
t=1

log
ρE(st)

ρθ̂(st)
,

T∑
t=1

rθ(st)

)

Proof. Refer to Appendix .4.

RKL surrogate objective has a special property that the ex-
pert density can be specified in unnormalized form, since
the normalizing factor does not change the surrogate objec-
tive. This makes density specification easier in a number of
scenarios.

Corollary 3.1.3 (Jensen-Shannon (JS) surrogate objec-
tive). Choosing f-divergence to be Jensen-Shannon Diver-
gence, the state marginal matching objective reduces to
optimizing the following surrogate objective:

L̃JS(θ) = − 1
αT covτ∼ρθ̂(τ)

(∑T
t=1 log

(
1 + ρE(st)

ρθ̂(st)

)
,
∑T
t=1 rθ(st)

)

Proof. Refer to Appendix .5.

Intuitively, the surrogate objectives encourage trajectories
which have higher sum of (1) density ratios (FKL) or (2) log
density ratios (RKL) or (3) mixture of them (JS) between
the expert and the agent to have higher return under the
reward function rθ. FKL is also known as a mode-covering
objective while RKL is a mode-seeking objective. In safety-
critical applications, RKL is more preferable, while FKL is
preferable in uniform exploration task.

3.3. Algorithm

Using the corollaries presented above, we can propose a
practical algorithm for learning the reward function rθ.
Given expert state marginal density ρE(s) and one instan-
tiation of f -divergence, the algorithm alternates between
solving the optimal MaxEnt policy under current reward,
and updating the reward parameter using SGD on the sam-
ple covariance. In practice, we need to fit a density ρ̂θ̂(s) to
estimate ρθ̂(s). The full algorithm is shown in Algorithm 1.

4. Experiments
In our experiments, we seek answers to the following ques-
tions: 1. How does our method compare to previous IRL/IL
methods in terms of state-marginal matching? 2. How can
learning a stationary reward help in downstream tasks?
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Algorithm 1 Inverse RL via State Marginal Matching
Input :ρE(s), initialized rθ, f -divergence
Output :Learned reward rθ, Policy πθ
for i← 1 to Iter do

πθ ←MaxEntRL(rθ)
Fit the density ρ̂θ̂(s) to collected samples from πθ
Compute estimated gradient ∇̂θL̃f (θ) for Eq. 4 over
ρθ̂(τ)

θ ← θ − λ∇̂θL̃f (θ)
end

f-MAX-RKL
AIRL

FKL(Our Method)
GAIL

JS(Our Method)
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RKL(Our Method)
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Figure 1. Forward (left) and Reverse (right) KL curves in point-
mass environment for Gaussian target density for all the methods
during training. Smoothed in a window of 120 evaluations.

4.1. Environments and Expert State Densities Setup

We test our methods and baselines on a pointmass envi-
ronment and the OpenAI Gym environment Reacher-v2
(Reacher). The pointmass environment is a 2D 4 x 4 room,
with a pointmass which operates under linear dynamics.
Reacher has non-linear dynamics to control a 2D arm of 2
DOF and is a more difficult task than pointmass.

We consider three tasks by specification of three different
expert state marginals in each environment: Gaussian and
Mixture of two Gaussians for single/bi-goal reaching, and
uniform distribution for exploration and downstream tasks.
More details of environment and expert state marginals are
discussed in Appendix .7.1 and .8.

4.2. Training Details

We benchmark the following baselines: MaxEnt
IRL (Ziebart et al., 2008), GAIL (Ho & Ermon, 2016),
AIRL (Fu et al., 2017), and f-MAX-RKL (Ghasemipour
et al., 2019) which shares the same objective with AIRL
except that it uses a vanilla discriminator unlike the discrim-
inator with a special structure in AIRL. Since we assume
access to expert densities only, we use importance sampling
for the expert samples needed in baselines.

We use SAC (Haarnoja et al., 2018) as the MaxEnt RL algo-

Figure 2. The task return (in terms of rtask) with different α and
prior reward weight λ. The performance of vanilla SAC is shown
in the leftmost column with λ = 0 in each subplot.

rithm for all the methods in continuous state-action spaces.
For our method and MaxEnt IRL, we fit a Kernel Density
(KDE) model to estimate agent state marginal, and use a
MLP for reward parameterization. For the baselines GAIL,
AIRL, f-MAX-RKL, we use the f-MAX (Ghasemipour et al.,
2019) authors’ official implementation1. The training details
are in Appendix .9.

4.3. Comparison to baselines

In general, it is not possible to evaluate real returns without
access to ground truth reward. Given expert density, we esti-
mate Forward and Reverse KL divergence in state marginals
between the expert and the agent during training, to evaluate
the state-marginal matching objectives for all the methods.
More details for the evaluation are discussed in Appendix
.10.

Figure 1 compares our algorithm with baselines on the point-
mass environment. We observe that all methods converge
(Max-Ent IRL is slightly unstable) and are able reduce the
FKL and RKL to near zero. Figure 3 compares these algo-
rithms on harder Reacher tasks. We observe that the base-
lines give unstable convergence, which can be attributed to
optimizing a different objective than SMM. Our methods
FKL, JS outperform the baselines in the forward KL and
the reverse KL metric.

4.4. Utility of learning a stationary reward

In this subsection, we demonstrate the utility of the learned
stationary reward by using it as a prior reward for the down-
stream task. Specifically, we consider a prior reward ob-
tained from a uniform expert density, and use it to make
the hard-exploration task in pointmass learnable. We use a
difficult goal-reaching task with distraction rewards, with
full details presented in appendix .11.

We use the learned prior reward rprior to augment the task
reward rtask by the following rule: r(s) = rtask(s) +

1https://github.com/KamyarGh/rl_swiss

https://github.com/KamyarGh/rl_swiss
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(a) Expert Density: Gaussian
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(b) Expert Density: Mixture of two Gaussians

Figure 3. Forward (left) and Reverse (right) KL curves in Reacher
environment for the goal-reaching tasks for all the methods during
training. Smoothed in a window of 120 evaluations.

λ(γrprior(s
′)− rprior(s)). The main theoretical result of (Ng

et al., 1999) dictates that adding a potential-based reward
in this form will not change the optimal policy. For GAIL
and f-MAX-RKL, they do not extract a reward function but
rather a discriminator, so we derive a prior reward from the
discriminator the same way as in (Ghasemipour et al., 2019;
Ho & Ermon, 2016).

The leftmost column of all subplots in Figure 2 show the
poor performance of SAC training without reward augmen-
tation (λ = 0). This verifies the difficulty in exploration
for solving the task. We change λ in the x-axis, and α in
SAC in the y-axis, and plot the final task return (in terms
of rtask) as a heatmap in Figure 2. The presence of larger
red region in the heatmap shows that our method is able to
extract a prior reward that is more robust and effective in
helping the downstream task attain better final performance
with its original reward. The learned reward functions are
visualized in Figure 5 of Appendix .11.

5. Conclusion
We present a new method to learn stationary rewards for
imitation via the state-marginal matching objective. This
method works under the setting where expert density can be
specified, making it ideal for exploration and safety tasks.
The rewards and the policies learned can be further used in
downstream tasks as task-agnostic priors. In future work,
we aim to test the capabilities for complex high-dimensional

continuous tasks and extend it to meta-learning setting.
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.1. Analytical Gradient of State Marginal Distribution

In this section we compute the gradient of state marginal distribution w.r.t. parameters of the reward function. We use this
gradient for the gradient of f -divergence objective in following section .2.

We start by writing the probability of trajectory τ of fixed horizon T under the optimal MaxEnt trajectory distribution for
rθ(s).

ρθ(τ) ∝ ρ0(s0)

T−1∏
t=0

p(st+1|st, at)e
∑T
t=1 rθ(st)/α (5)

Let p(τ) = ρ0(s0)
∏T−1
t=0 p(st+1|st, at), which is the probability of the trajectory under the dynamics of the environment.

Explicitly computing the normalizing factor, we can write the distribution over trajectories as follows:

ρθ(τ) =
p(τ)e

∑T
t=1 rθ(st)/α∫

p(τ)e
∑T
t=1 rθ(st)/αdτ

(6)

Let ητ (s) denote the number of times a state occurs in a trajectory τ . We now compute the marginal distribution of all states
in the trajectory:

ρθ(s) ∝
∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)dτ (7)

where

ητ (s) =

T∑
t=1

1(τt = s) (8)

is the empirical frequency of state s in trajectory τ (omitting the starting state τ0 as the policy cannot change the initial state
distribution).

The marginal distribution over states can now be written as:

ρθ(s) ∝
∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)dτ (9)

In the following derivation we will use st to denote states in trajectory τ and s′t to denote states from trajectory τ ′. Explicitly
computing the normalizing factor, the marginal distribution can be written as follows:

ρθ(s) =

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)dτ∫ ∫

p(τ ′)e
∑T
t=1 rθ(s′t)/αητ ′(s′)dτ ′ds′

=

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)dτ∫

p(τ ′)e
∑T
t=1 rθ(s′t)/α

∫
ητ ′(s′)ds′dτ ′

=

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)dτ

T
∫
p(τ ′)e

∑T
t=1 rθ(s′t)/αdτ ′

(10)

In the second step we swap the order of integration in the denominator. The last line follows because only the T states in
τ satisfy s ∈ τ . Finally, we define f(s) and Z to denote the numerator (dependent on s) and denominator (normalizing
constant), to simplify notation in further calculations.

f(s) =

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)dτ

Z = T

∫
p(τ)e

∑T
t=1 rθ(st)/αdτ

ρθ(s) =
f(s)

Z

(11)
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As an initial step, we compute the derivatives of f(s) and Z w.r.t reward function at some state rθ(s∗).

df(s)

drθ(s∗)
=

1

α

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)ητ (s∗)dτ (12)

dZ

drθ(s∗)
=
T

α

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s∗)dτ =

T

α
f(s∗) (13)

We can then apply the quotient rule to compute the derivative of policy marginal distribution w.r.t the reward function.

dρθ(s)

drθ(s∗)
=
Z df(s)
drθ(s∗) − f(s) dZ

drθ(s∗)

Z2

=

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)ητ (s∗)dτ

αZ
− f(s)

Z

Tf(s∗)

αZ

=

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)ητ (s∗)dτ

αZ
− T

α
ρθ(s)ρθ(s

∗)

(14)

Now we have all the tools needed to get the derivative of ρθ w.r.t θ by the chain rule.

dρθ(s)

dθ
=

∫
dρθ(s)

drθ(s∗)

drθ(s
∗)

dθ
ds∗

=
1

α

∫ (∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)ητ (s∗)dτ

Z
− Tρθ(s)ρθ(s∗)

)
drθ(s

∗)

dθ
ds∗

=
1

αZ

∫ ∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)ητ (s∗)

drθ(s
∗)

dθ
ds∗dτ − T

α
ρθ(s)

∫
ρθ(s

∗)
drθ(s

∗)

dθ
ds∗

=
1

αZ

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)

T∑
t=1

drθ(st)

dθ
dτ − T

α
ρθ(s)

∫
ρθ(s

∗)
drθ(s

∗)

dθ
ds∗

(15)

.2. Derivation of f -divergence surrogate objective

f -divergence (Ali & Silvey, 1966) is a family of divergence, which generalizes forward/reverse KL divergence. Formally, let
P and Q be two probability distributions over a space Ω, then for a convex function f such that f(1) = 0, the f -divergence
of P from Q is defined as:

Df (P || Q) :=

∫
Ω

f

(
dP

dQ

)
dQ (16)

Applied to state marginal matching between expert density ρE(s) and agent density ρθ(s) over state space S, the f -
divergence objective is:

min
θ
Lf (θ) := Df (ρE || ρθ) =

∫
S
f

(
ρE(s)

ρθ(s)

)
ρθ(s)ds (17)

Now we show the proof of Theorem 3.1 on f -divergence surrogate objective:

Proof. The gradient of the original objective can be derived as:

dLf (θ)

dθ
=

∫
∇θ
(
f

(
ρE(s)

ρθ(s)

)
ρθ(s)

)
ds

=

∫ (
f

(
ρE(s)

ρθ(s)

)
− f ′

(
ρE(s)

ρθ(s)

)
ρE(s)

ρθ(s)

)
dρθ(s)

dθ
ds

,
∫
hf

(
ρE(s)

ρθ(s)

)
dρθ(s)

dθ
ds

(18)
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, where hf (t) , f(t)−f ′(t)t for convenience. Note that if f(t) is non-differentiable at some points, such as f(t) = |t−1|/2
at t = 1 for Total Variation distance, we take one of its subderivative.

Substituting the gradient of state marginal distribution w.r.t θ in Eq. 15, we have:

dLf (θ)

dθ
=

∫
hf

(
ρE(s)

ρθ(s)

)(
1

αZ

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)

T∑
t=1

drθ(st)

dθ
dτ − T

α
ρθ(s)

∫
ρθ(s

∗)
drθ(s

∗)

dθ
ds∗

)
ds

=
1

αZ

∫
p(τ)e

∑T
t=1 rθ(st)/α

T∑
t=1

hf

(
ρE(st)

ρθ(st)

) T∑
t=1

drθ(st)

dθ
dτ − T

α

∫
hf

(
ρE(s)

ρθ(s)

)
ρθ(s)

(∫
ρθ(s

∗)
drθ(s

∗)

dθ
ds∗
)
ds

=
1

αT

∫
ρθ(τ)

T∑
t=1

hf

(
ρE(st)

ρθ(st)

) T∑
t=1

drθ(st)

dθ
dτ − T

α

(∫
hf

(
ρE(s)

ρθ(s)

)
ρθ(s)ds

)(∫
ρθ(s

∗)
drθ(s

∗)

dθ
ds∗
)

=
1

αT
Eτ∼ρθ(τ)

[
T∑
t=1

hf

(
ρE(st)

ρθ(st)

) T∑
t=1

drθ(st)

dθ

]
− T

α
Es∼ρθ(s)

[
hf

(
ρE(s)

ρθ(s)

)]
Es∼ρθ(s)

[
drθ(s)

dθ

]
(19)

To gain more intuition about this equation, we can convert all the expectations to be over the trajectories:

dLf (θ)

dθ
=

1

αT
Eτ∼ρθ(τ)

[
T∑
t=1

hf

(
ρE(st)

ρθ(st)

) T∑
t=1

drθ(st)

dθ

]
− 1

αT
Eτ∼ρθ(τ)

[
T∑
t=1

hf

(
ρE(st)

ρθ(st)

)]
Eτ∼ρθ(τ)

[
T∑
t=1

drθ(st)

dθ

]

(20)

To compute this gradient we can form a surrogate objective L̃f which is not the true objective but has the correct gradient:

L̃f (θ) =
1

αT
Eτ∼ρθ̂(τ)

[
T∑
t=1

hf

(
ρE(st)

ρθ̂(st)

) T∑
t=1

rθ(st)

]
− 1

αT
Eτ∼ρθ̂(τ)

[
T∑
t=1

hf

(
ρE(st)

ρθ̂(st)

)]
Eτ∼ρθ̂(τ)

[
T∑
t=1

rθ(st)

]
(21)

where parameter θ̂ does not involve optimization for surrogate objective w.r.t. θ.

It is covariance over agent trajectories between function of density ratios and the sum of rewards:

L̃f (θ) =
1

αT
covτ∼ρθ̂(τ)

(
T∑
t=1

hf

(
ρE(st)

ρθ̂(st)

)
,

T∑
t=1

rθ(st)

)

=
1

αT
covτ∼ρθ̂(τ)

(
T∑
t=1

f

(
ρE(st)

ρθ̂(st)

)
− f ′

(
ρE(st)

ρθ̂(st)

)(
ρE(st)

ρθ̂(st)

)
,

T∑
t=1

rθ(st)

) (22)

Thus we have derived the general case of state-marginal matching surrogate objective in Eq. 22.

Now we instantiate f -divergence as follows:

.3. Forward KL Divergence

Proof. Forward KL divergence (FKL) is defined as f(t) = t log t, thus hf (t) = −t, then FKL surrogate objective is:

L̃FKL(θ) = − 1

αT
covτ∼ρθ̂(τ)

(
T∑
t=1

ρE(st)

ρθ̂(st)
,

T∑
t=1

rθ(st)

)
(23)
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FKL is mode covering, so the agent will try to cover all the modes of the state marginal distribution potentially also visiting
regions where the expert does not visit.

.4. Reverse KL Divergence

Proof. Reverse KL divergence (RKL) is defined as f(t) = − log t, thus hf (t) = 1− log t, then RKL surrogate objective is:

L̃RKL(θ) =
1

αT
covτ∼ρθ̂(τ)

(
T∑
t=1

(
1− log

ρE(st)

ρθ̂(st)

)
,

T∑
t=1

rθ(st)

)

= − 1

αT
covτ∼ρθ̂(τ)

(
T∑
t=1

log
ρE(st)

ρθ̂(st)
,

T∑
t=1

rθ(st)

)

= − 1

αT
covτ∼ρθ̂(τ)

(
T∑
t=1

log
ρ̃E(st)

ρθ̂(st)
,

T∑
t=1

rθ(st)

) (24)

Note RKL surrogate objective is special that the expert density can be in an unnormalized form ρ̃E(s) = ZρE(s) as the
normalizing constant Z can be omitted by taking the logarithm, bypassing the use of complicated sampling methods.

RKL is mode seeking. In this case the agent will likely adhere to modes of the state marginal distribution and will have
very little probability mass where the expert has low probability mass. This makes RKL an ideal candidate in risk-averse
applications.

.5. Jensen-Shannon Divergence

Proof. Jensen-Shannon divergence (JS) is defined as f(t) = t log t− (1 + t) log 1+t
2 , thus hf (t) = − log(1 + t), then JS

surrogate objective is:

L̃JS(θ) = − 1

αT
covτ∼ρθ̂(τ)

(
T∑
t=1

log

(
1 +

ρE(st)

ρθ̂(st)

)
,

T∑
t=1

rθ(st)

)
(25)

JS is bounded and lies between Forward KL and Reverse KL.

.6. What objective do the previous IRL algorithms optimize?

In this section, we discuss previous IRL methods and analyze which objectives they truly optimize. Our analysis shows that
AIRL and GAN-GCL methods optimize for a different objective than they claim, due to their usage of incorrect importance
sampling weights.

.6.1. MAXENTIRL (ZIEBART ET AL., 2008), DEEP MAXENTIRL (WULFMEIER ET AL., 2015), GCL (FINN
ET AL., 2016B)

Classical IRL methods (Russell, 1998; Ng et al., 2000) obtain a policy by learning a reward function from sampled
trajectories of an expert policy. MaxEntIRL (Ziebart et al., 2008) learns a stationary reward by maximizing likelihood on
expert trajectories, i.e., it minimizes forward KL divergence in trajectory space under the maximum entropy RL framework.
A trajectory is a temporal collection of state-action pairs, and this makes the trajectory distribution different from state-action
marginal and state marginal distribution. Each objective - minimizing divergence in trajectory space τ , in state-action
marginal space (s, a) and state marginal s is a different method in its own sense.
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MaxEntIRL derives a surrogate objective w.r.t. reward parameter as the difference in cumulative rewards of the trajectories
between the expert and the soft-optimal policy under current reward function. To train the soft-optimal policy, it requires
running MaxEnt RL in an inner loop after every reward update. This algorithm has been successfully applied for predicting
behaviors of taxi drivers with a linear parameterization of reward. Wulfmeier et al. (2015) shows that MaxEntIRL reward
function can be parameterized as deep neural networks as well.

Guided cost learning (GCL) (Finn et al., 2016b) is one of the first methods to train rewards using neural network directly
through experiences from real robots. They achieve this result by leveraging sample-efficient guided policy search for policy
optimization, employing importance sampling to correct for distribution shift when the policy has not converged, and using
novel regularizations in reward network. GCL optimizes for the same objective as MaxEntIRL and Deep MaxEntIRL. To
summary this three work, we have the following observation: MaxEntIRL, Deep MaxEntIRL, GCL all optimize for the
forward KL divergence in trajectory space, i.e. DKL(ρE(τ) || ρθ(τ)).

.6.2. GAN-GCL (FINN ET AL., 2016A), AIRL (FU ET AL., 2017), EAIRL (QURESHI ET AL., 2018)

Finn et al. (2016a) shows that GCL is equivalent to training GANs with a special structure in the discriminator (GAN-GCL).
Note that this result uses an approximation in importance sampling, and hence the gradient estimator is biased. Fu et al.
(2017) shows that GAN-GCL does not perform well in practice since its discriminator models density ratio over trajectories
which lead to high-variance. They propose an algorithm AIRL in which the discriminator estimates the density ratio of
state-action marginal, and shows that AIRL empirically performs better than GAN-GCL. AIRL also uses approximate
importance sampling in its derivation, and therefore its gradient is also biased. GAN-GCL and AIRL claim to be able to
recover a reward function due to the special structure in the discriminator. EAIRL (Qureshi et al., 2018) uses empowerment
regularization on policy objective based on AIRL.

All the above algorithm optimize for an objective that they claim to be equivalent to MaxEntIRL. However, there is an
approximation involved in the procedure and let us analyze what that is, by going through the derivation for equivalence of
AIRL to MaxEntIRL as shown in Fu et al. (2017) (Appendix A of that paper).

The authors start from writing down the objective for MaxEntIRL: maxθ LMaxEntIRL(θ) = Eτ∼D[log pθ(τ)].

When the trajectory distribution is induced by the soft-optimal policy under reward rθ, it can be parameterized as pθ(τ) ∝
p(s0)

∏T−1
t=0 p(st+1|st, at)erθ(st,at), then its gradient is derived as follows:

d

dθ
LMaxEntIRL(θ) = ED

[
d

dθ
rθ(st, at)

]
− d

dθ
log(Zθ)

= ED

[
T∑
t=1

d

dθ
rθ(st, at)

]
− Epθ

[
T∑
t=1

d

dθ
rθ(st, at)

]

=

T∑
t=1

ED
[
d

dθ
rθ(st, at)

]
− Epθ,t

[
d

dθ
rθ(st, at)

] (26)

where pθ,t(st, at) =
∫
st′!=t,at′!=t

pθ(τ) denote the state action marginal at time t.

As it is difficult to draw samples from pθ, the authors instead train a separate importance sampling distribution µ(τ). For the
choice of distribution they follow (Finn et al., 2016b) and use a mixture policy µ(a|s) = 0.5π(a|s) + 0.5q̂(a|s) where q̂(a|s)
is the rough density estimate trained on the demonstrations. This is justified as reducing the variance of the importance
sampling distribution. Thus the new gradient becomes:

d

dθ
LMaxEntIRL(θ) =

T∑
t=1

ED
[
d

dθ
rθ(st, at)

]
− Eµt

[
pθ,t(st, at)

µt(st, at)

d

dθ
rθ(st, at)

]
(27)

We emphasize here q̂(a|s) is the density estimate trained on the demonstrations.

They additionally aim to adapt the importance sampling distribution to reduce variance by minimizing DKL(π(τ) || pθ(τ)),
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and this KL objective can be simplified to the following MaxEnt RL objective:

maxπEπ

[
T∑
t=1

rθ(st, at)− log π(at|st)

]
(28)

This ends the derivation of gradient of MaxEntIRL. Now AIRL authors tried to show that the gradient of AIRL matches
the gradient for MaxEntIRL objective shown above, i.e. d

dθLMaxEntIRL(θ) = d
dθLAIRL(θ), then AIRL is equivalent to

MaxEntIRL to a constant, i.e. LMaxEntIRL(θ) = LAIRL(θ) + C.

In AIRL, the cost learning objective is replaced by training a discriminator of the following form:

Dθ(s, a) =
efθ(s,a)

efθ(s,a) + π(a|s)
(29)

The objective of the discriminator is to maximize the cross-entropy between the expert demonstrations and the generated
samples:

max
θ
LAIRL(θ) =

T∑
t=1

ED[logDθ(st, at)] + Eπt [log(1−Dθ(st, at))]

=

T∑
t=1

ED
[
log

efθ(st,at)

efθ(st,at) + π(at|st)

]
+ Eπt

[
log

π(at|st)
π(at|st) + efθ(st,at)

]

=

T∑
t=1

ED[fθ(st, at)] + Eπt [log π(at|st)]− 2Eµt
[
log(π(at|st)) + efθ(st,at)

]
(30)

where µt is the mixture of state-action marginal from expert demonstrations and from state-action marginal induced by
current policy π at time t.

In AIRL, the policy π is optimized with the following reward:

r̂(s, a) = log(Dθ(s, a))− log(1−Dθ(s, a))

= fθ(s, a)− log π(a|s)
(31)

Taking the derivative with respect to θ,

d

dθ
LAIRL(θ) =

T∑
t=1

ED
[
d

dθ
fθ(st, at)

]
− Eµt

[
efθ(st,at)

(efθ(st,at) + π(at|st))/2
d

dθ
fθ(st, at)

]
(32)

The authors multiply state marginal π(st) =
∫
a
πt(st, at) to the fraction term in the second expectation, and denote that

p̂θ,t(st, at) , efθ(st,at)π(st) and µ̂t(st, at) , (efθ(st,at) + π(at|st))π(st)/2.

Thus the gradient of the discriminator becomes:

d

dθ
LAIRL(θ) =

T∑
t=1

ED
[
d

dθ
fθ(st, at)

]
− Eµt

[
p̂θ,t(st, at)

µ̂t(st, at)

d

dθ
fθ(st, at)

]
(33)

The issues occurs when the authors tried to match Eq. 33 with Eq. 44, i.e. d
dθLMaxEntIRL(θ)

?
= d

dθLAIRL(θ) with same
reward parameterization fθ = rθ.

If they are equivalent, then we have the importance weights equality:

p̂θ,t(st, at) = pθ,t(st, at), µ̂t(st, at) = µt(st, at) (34)
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Then given the definitions, we have:

p̂θ,t(st, at) , efθ(st,at)π(st) = π∗θ(st)π
∗
θ(at|st) , pθ,t(s, a)

µ̂t(st, at) , (efθ(st,at) + π(at|st))π(st)/2 = (π(at|st) + q̂(at|st))π(st)/2 , µt(st, at)
(35)

where π∗θ is soft-optimal policy under reward rθ = fθ (assumption), thus log π∗θ(at|st) = fθ(st, at). Then equivalently,

efθ(st,at) = q̂(at|st) = π∗θ(at|st) = π(at|st) (36)

Unfortunately these equivalences hold only at the global optimum of the algorithm, when the policy π reaches the expert
policy πE ≈ q̂ and the discriminator is also optimal. This issue also applies to GAN-GCL and EAIRL. Therefore, we have
the following critical conclusion:

GAN-GCL, AIRL, EAIRL are not equivalent to MaxEntIRL, i.e. not minimizing forward KL in trajectory space.

Interestingly f-MAX Ghasemipour et al. (2019) (refer to their Appendix C) authors further go one step to prove that AIRL
minimizes the reverse KL between state action marginal DKL(ρθ(s, a) || ρE(s, a)). This result is surprising because if both
the proofs in AIRL and f-MAX paper are correct, it means that:

AIRL ≡ Forward KL between trajectory distributions ≡ Reverse KL between state-action marginal distribution. (37)

where the equivalence between first and second is shown in AIRL paper and equivalence between first and third is given in
f-MAX paper.

A bandit counter-example: Consider a one-timestep bandit MDP. Here the state-action marginal is equivalent to trajectory
distribution. Applying Equation 37 on this simple MDP gives that forward KL between state-action marginal is equivalent
to reverse KL between state-action marginal distribution, which is clearly wrong.

To show the equivalence of AIRL to reverse KL matching objective, Ghasemipour et al. (2019) considers that the AIRL
discriminator can be trained till convergence:

efθ(s,a)

efθ(s,a) + π(a|s)
≡ ρE(s, a)

ρE(s, a) + ρθ(s, a)
(at convergence) (38)

but if this is true then fθ(s, a) can no longer be interpreted as the stationary reward function as it is a function of current
policy:

fθ(s, a) =
ρE(s, a)

ρθ(s, a)
π(a|s) (39)

This is quite different from the AIRL setup as AIRL uses fθ(s, a) as a a policy independent reward in the policy objective
step.

AIRL is not optimizing reverse KL in state-action marginal space.

.6.3. GAIL (HO & ERMON, 2016), FAIRL, F-MAX-RKL (GHASEMIPOUR ET AL., 2019)

Generative Adversarial Imitation Learning (GAIL) (Ho & Ermon, 2016) addresses the issue of running RL in an inner step
by adversarial training (Goodfellow et al., 2014). A discriminator learns to differentiate over state-action marginal and a
policy learns to maximize the rewards acquired from the discriminator in an alternating fashion. It can be further shown that
the GAIL is minimizing the Jensen-Shannon divergence over state-action marginal given optimal discriminator.

Recently the idea of minimizing the divergence between expert and policy’s marginal distribution is further comprehensively
studied and summarized in Ke et al. (2019) and Ghasemipour et al. (2019), where the authors show that any f -divergence
can be minimized for imitation through f -GAN framework (Nowozin et al., 2016). f-MAX proposes several instantiations
of f -divergence: forward KL for f-MAX-FKL (FAIRL), reverse KL for f-MAX-RKL, and Jensen-Shannon for original



Learning Rewards via State Marginal Matching

GAIL. Their objectives are summarized as below, where θ is policy parameter, f∗ is the convex conjugate of f and Tω is the
discriminator.

min
θ
Df (ρE(s, a) || ρθ(s, a)) = min

θ
max
ω

E(s,a)∼ρE(s,a)[Tω(s, a)]− E(s,a)∼ρθ(s,a)[f
∗(Tω(s, a))] (40)

These adversarial IRL methods cannot recover a reward function because they do minimax optimization with discriminator
in the inner-loop (when optimal, the discriminator predicts 1

2 everywhere), and have poorer convergence guarantees opposed
to using an analytical gradient.

GAIL, FAIRL, f-MAX-RKL are optimizing JS, forward KL, and reverse KL in state-action marginal space, respectively.

.6.4. SMM (LEE ET AL., 2019)

Lee et al. (2019) presents state marginal matching (SMM) for efficient exploration by minimizing reverse KL between
expert and policy’s state marginals (Eq 41). However, their method cannot recover the stationary reward function because it
uses fictitious play between policy πθ and variational density q, and requires storing a historical average of policies and
densities over previous iterations.

max
θ
−DKL(ρθ(s) || ρE(s)) = max

θ
Eρθ(s)

[
log

ρE(s)

ρθ(s)

]
= max

θ
min
q

Eρθ(s)

[
log

ρE(s)

q(s)

]
(41)

.6.5. SUMMARY OF IRL METHODS: TWO CLASSES OF BILEVEL OPTIMIZATION

We can generalize the related works including our method into reward-dependent and policy-dependent classes from the
view of optimization objective.

For the reward-dependent method such as MaxEntIRL, AIRL, and our method, the objective of reward/discriminator rθ
and policy πφ can be viewed as a bilevel optimization:

min
θ,φ

L(rθ, πφ)

s.t. πφ ∈ arg max
π

g(rθ, π)
(42)

Thus the policy is dependent on current reward πφ = f(rθ), thus training on the final reward does produce optimal policy,
i.e. recovering the reward.

For the policy-dependent method such as f-MAX, GAIL, and SMM, the objective of reward/discriminator rθ and policy
πφ can be viewed as:

max
φ

min
θ
L(rθ, πφ) (43)

This is a special case of bilevel optimization, minimax game. The reward is dependent on current policy rθ = h(πφ), thus
it’s non-stationary and cannot guarantee to recover the reward.
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.7. Implementation Details

.7.1. ENVIRONMENT DETAILS

• Pointmass: The pointmass environment has 2D square state space with range [0, l]2, and 2D actions that linearly move
the agent upto a unit distance in each dimension. The agent starts from the bottom left corner at coordinate (0, 0). The
time horizon is T = 30. For the goal-reaching tasks, l is set as 4 and for the uniform exploration task, l = 6.

• Reacher: The Reacher-v2 environment (Brockman et al., 2016) has a robotic arm with 2 DOF on a 2D arena. The
state space is 8-dimensional: sine and cosine of both joint angles, and the position and velocity of the arm fingertip in x
and y direction. The action controls the torques for both joints. The lengths of two bodies are r1 = 0.1, r2 = 0.11, thus
the trace space of the fingertip is an annulus with R = r1 + r2 = 0.21 and r = r2 − r1 = 0.01. Since r is very small,
it can be approximated as a disc with radius R = 0.21. The time horizon is T = 30. We remove the object in original
reacher environment as we only focus on the fingertip trajectories. Figure 4 visualizes one frame of the environment.2

Figure 4. Reacher-v2 environment rendering. The arm is shown in blue.

.8. Expert State Density Details

For pointmass, the state marginal domain is 2D coordinate of pointmass position; for reacher, the domain is x-y coordinate
of fingertip position. We experiment with the following expert densities:

• Single Gaussian: for pointmass, µ = (l/2, l/2) = (2, 2), σ = 0.5; for reacher: µ = (−R, 0) = (−0.21, 0), σ = 0.05.

• Mixture of two equally-weighted Gaussians: for pointmass: µ1 = (l/4, 3l/4) = (1, 3), µ2 = (3l/4, l/4) =
(3, 1), σ1 = σ2 = 0.3. reacher: µ1 = (−R/

√
2,−R/

√
2), µ2 = (−R/

√
2, R/

√
2), σ1 = σ2 = 0.05.

• Uniform Distribution: for pointmass, uniform over whote space [−l, l]2 = [−6, 6]2; we didn’t experiment for reacher
as a random policy can explore well enough.

.9. Training Details

Hyperparameters: We use SAC as the underlying RL algorithm for all compared methods. The policy network is a
tanh squashed Gaussian, where the mean and std is parameterized by a (64, 64) ReLU MLP with two output heads. The
Q-network is a (64, 64) ReLU MLP. We use Adam to optmize both the policy and the Q-network with a learning rate of
0.003. α is fixed to be 1. The replay buffer has a size of 12000, and we use a batch size of 256.

For our method and MaxEnt IRL, the reward function is a (64, 64) ReLU MLP. We clamp the output of the network to be
within the range [-10, 10]. We also use Adam to optimize the reward network with a learning rate of 0.001.

For other baselines including AIRL, f-MAX-RKL, GAIL, a discriminator is used. We use the default discriminator
architecture as in (Ghasemipour et al., 2019). In detail, first the input is linearly embedded into a 128-dim vector. This
hidden state then passes through 6 resnet blocks of 128-dimensions; the residual path uses batch normalization and Tanh
activation. The last hidden state is then linearly embedded into a single-dimensional output, which is the logits of the
discriminator. The logit is clipped to be within the range [−10, 10]. The discriminator is optimized using Adam with a
learning rate of 0.0003 and a batch size of 128.

2Figure credit: https://gym.openai.com/envs/Reacher-v2/

https://gym.openai.com/envs/Reacher-v2/
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At each epoch, for all methods, we train the sac for 10 episodes using the current reward/discriminator. We do not reinitialize
SAC after the reward is updated, nor do we reinitialize the replay buffer. This proves not to affect the overall training, while
saving lots of computation time. For our methods and MaxEnt IRL, we update the reward for 2 gradient steps in Reacher,
and 5 gradient steps in pointmass. For AIRL, f-MAX-RKL and GAIL, the discrminator takes 60 gradient steps per epoch in
pointmass, and 20 gradient steps in Reacher. We train all methods for 800 epochs.

Our method and MaxEnt IRL requires an estimation of the agent density. We use kernel density estimation to fit the agent’s
density, using epanechnikov kernel with a bandwidth of 0.2 for pointmass, and a bandwidth of 0.02 for Reacher. At each
epoch, we sample 1000 trajectories (30000 states) from the trained SAC to fit the kernel density model.

Importance Sampling for Baselines: Since we assume only access to expert density instead of expert trajectories in
traditional IL framework, we use importance sampling for the expert term in the objectives of baselines:

• For MaxEntIRL: given the reward is only dependent on state, its surrogate objective can be transformed into covariance
in state marginal space using importance sampling from agent states:

L̃MaxEntIRL(θ) =
1

α

T∑
t=1

(
Est∼ρE,t [rθ(st)]− Est∼ρθ̂,t [rθ(st)]

)
=
T

α
(Es∼ρE [rθ(s)]− Es∼ρ̂θ [rθ(s)])

=
T

α
covs∼ρθ̂

(
ρE(s)

ρθ̂(s)
, rθ(s)

) (44)

where ρt(s) is state marginal at timestamp t, and ρ(s) =
∑T
t=1 ρt(s)/T is state marginal averaged over all timestamps.

• For GAIL, AIRL, f-MAX-RKL: The discriminator needs to be trained using expert samples. Since we have only samples
from the agent and the expert density, we first fit a density model to the agent distribution as ρ̂θ (using the same density
model as described above), and then use importance sampling to compute the discriminator objective:

min
D

L(D) = −Es∼ρ̂θ
[
ρE(s)

ρ̂θ(s)
logD(s)

]
− Es∼ρθ [log(1−D(s))] (45)

.10. Evaluation Metric Details

For the approximation of both forward and reverse KL divergence, we use non-parametric Kozachenko-Leonenko es-
timator (Kozachenko & Leonenko, 1987; Kraskov et al., 2004) with lower error (Singh & Póczos, 2016) compared to
plug-in estimators using density models. Suggested by (Ver Steeg, 2000)3, we choose k = 3 in k-nearest neighbor for
Kozachenko-Leonenko estimator. Thus for each evaluation, we need to collect agent state samples and expert samples for
computing the estimators.

Since in practice we use Gaussian distributions for expert density, we can easily obtain the expert samples through direct
sampling before training. In addition, to avoid numeric overflow in KL estimation for two disjoint distributions, we discard
the “illegal” expert samples outside the observation space of environment, and this is showed to be a constant offset from
original KL value. Formally, we have the following statement:

Proposition .0.1 (Constant offset in f -divergence estimation). Given two probability distributions P and Q on the same
domain Ω, assume that the support of P covers the whole domain, whereas the support of Q is a finite proper subset of the
domain, i.e. supp(P ) = Ω and supp(Q) = Ψ ⊂ Ω. For robust estimation for KL divergence to avoid numeric overflow,
here we manually assign Q(x) = ε > 0 for x ∈ Ω−Ψ in the disjoint space. Then the difference in computing f -divergence
Df (P || Q) on between the domain Ω and the support Ψ is constant w.r.t. Q.

3https://github.com/gregversteeg/NPEET

https://github.com/gregversteeg/NPEET
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Proof.

Df (P || Q) =

∫
Ω

Q(x)f

(
P (x)

Q(x)

)
dx

=

∫
Ψ

Q(x)f

(
P (x)

Q(x)

)
dx+

∫
Ω−Ψ

Q(x)f

(
P (x)

Q(x)

)
dx

=

∫
Ψ

Q(x)f

(
P (x)

Q(x)

)
dx+

∫
Ω−Ψ

εf

(
ε

P (x)

)
dx

=

∫
Ψ

Q(x)f

(
P (x)

Q(x)

)
dx+ C

(46)

Specifically, for reverse KL, DKL(Q || P )→
∫

Ψ
Q(x) log Q(x)

P (x)dx as 0 log 0→ 0.

Thus in practice, P is expert Gaussian density over the whole domain, and Q is agent density within environment space,
according to the proposition above, we can discard expert samples outside the environment space with a constant decrease
in approximate KL value across different Q.

In our experiments, before training we sample M = 10000 expert samples and keep the valid ones within observation space.
For agent, we collect 1000 trajectories of N = 1000 ∗ T = 30000 state samples. Then we use these two batches of samples
to estimate KL divergence for every epoch during training.

.11. Hard-to-explore Downstream Task

Task Details: We designed a hard-to-explore task for the pointmass. The grid size is 6× 6, the agent is always born at [0, 0],
and the goal is to reach the region [5.95, 6]× [5.95, 6]. The agent only receives a reward of 1 if it reaches the goal region. To
make the task more difficult, we add two distraction goals: one is at [5.95, 6]× [0, 0.05], and the other at [0, 0.05]× [5.95, 6].
The agent receives a reward of 0.1 if it reaches one of these distraction goals.
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Figure 5. Extracted final reward of all compared methods for the uniform expert density in pointmass. We can see that the reward
recovered by FKL, RKL, JS and the baseline MaxEntIRL are very similar: the reward increases as the distance to the agent’s born place,
the bottom left corner, increases. This is very intuitive for achieving the target unfirom density: states that takes more time to reach should
have higher rewards. AIRL, f-MAX-RKL, and GAIL demonstrate a different pattern that the rewards change very smoothly, suggesting
that they cannot learn the stationary reward exactly.


